
On the Question of Nonlinear Fluctuations of Heavy Ropes 
 

SERGEY O. GLADKOV 
Moscow Aviation Institute (National Research University) (MAI)  

Volokolamskoe Shosse, 4.  
125993, Moscow 

RUSSIA 
 
  

Abstract: - Due to the methods of the dynamics of curvilinear motion the system of nonlinear differential 
equations describing two-dimensional arbitrary displacements of a heavy rope, one end of which is free, and the 
other is fastened is obtained. The problem is solved in the language of displacement vector 
( ) ( ) ( ), , ,x yx t x t x tξ ξ ξ= +i j


, where ( ),x x tξ  and ( ),y x tξ  accordingly, arbitrary offsets of the rope points 
in the axes of coordinates. It is shown that in the limit of small oscillations the obtained equations are reduced 
to the description of the weak offsets of the horizontal string fixed on both ends, and small displacements of the 
heavy vertical filament, fluctuating due to the force of gravity. The main goal of the paper is the mathematical 
description of the strong non-equilibrium dynamic systems.  
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 1 Introduction  
    In recent decades, a variety of nonlinear 
problems have become very popular, dedicated to 
the description of a l ot of real physical, chemical 
and biological processes flowing in gases, liquids 
and solids in different model conditions. The 
overwhelming majority of the set tasks are solved 
due to methods of numerical integration of 
nonlinear differential equations. in this case, a 
number of interesting features can be identified and 
a remarkable example here is the classic Lorentz 
solution, describing the hydrodynamics of the flat-
parallel flow of fluid between two parallel 
horizontal planes at convection accounting. Note, 
by the way, that at numerical decision of the 
received system of equations Lorentz the strange 
attractor has been found. Unfortunately, the 
attractor is not a property of any nonlinear system 
of equations, and its detection is always 
accompanied by the undisguised joy of the 
researcher who discovered it. 
     In our work we will talk about the derivation of 
the system of nonlinear dynamic equations in the 
conditions of arbitrary fluctuations of the heavy 
rope, deduced from the equilibrium position, for 
example, by air flow or as a result of simple 
dynamic deviation from Equilibrium positions. The 
solution of the task is purely analytical, and we will 
test the obtained equations due to the limit 
transitions to various classical cases, from which 
some interesting regularities that are not previously 
mentioned in any of the publications known to us, 
devoted to analysis of solutions of different types 

of equations in private derivatives (for example, see 
monographs [1], [2], as well as a lot of purely 
mathematical articles on the theory of mathematical 
physics equations). Some estimations and 
calculations have been preliminary made by us in 
work [3] where the movement of a rope in a 
viscous continuum taking into account local force 
of resistance is investigated. We will not consider 
energy dissipation in this work. The article includes 
Introduction, The Main Part, analysis of the 
resulting equations, basic results, conclusion and 
list of used literature. 
    The main merit of the work is the conclusion of a 
system of non-linear differential equations 
describing arbitrary fluctuations of heavy ropes. In 
private cases, these equations are transferred to 
known equations, which indicates their correctness. 
This is now the first attempt to produce equations 
that describe the complex dynamic behavior of 
long - dimension objects. The results of the article 
can be compared to the private results obtained in 
the work [3]. 
 
 
2 Decision of the Problem 
   Imagine a rope suspended in one end (see Figure 
1), and put before itself the task to describe its 
shape and dynamics of movement at any time after 
removing it from the position of equilibrium. The 
free end of the rope is rejected in a co mpletely 
arbitrary manner. This is the initial deviation or 
otherwise, the initial form of the rope, we will ask 
how   
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    ( ) ( ),0x x=ξ S .                                         (1) 
   
According to the geometry of fig. 1, w here v  Is 
the speed of moving the surface points of the rope, 
for which v=vτ , where −τ  is single vector 
tangent, held in an arbitrary point of the rope, angle 
α −  is outer angle between tangent and axis x .   
    For the conclusion of the basic equations of the 
rope motion we will write its full energy in the 
form of kinetic T  and potential energies U , 
namely  

21
2 l l l

E T U dl udl dlρ ρ= + = + + ⋅∫ ∫ ∫ξ g ξ ,  (2)  

where ρ −  is linear density of the rope, 
t

∂
= −
∂
ξξ  

is speed of each element of the rope, u −  is the 
potential energy attributable to the unit length of 
the rope, −g  is the acceleration of gravity and l −  
is the rope length.  

   Here it is necessary to pay special attention to the 
physical sense of potential energy u  that is the unit 

length of the rope. The value 
u
ρ

 has dimension 

squares speed. This speed characterizes the speed 
of moving the surface points of the rope, and in the 
limit of small movements of the rope (or string) 
becomes equal to the speed of its longitudinal 
oscillations 0v . It is obvious that in general it 
should be considered that    

     v u
ρ

= .                                                 (3)  

   It is quite clear that the velocity vector of the 
surface points is defined as v=vτ . For this speed 
we have the right to immediately write equations of 
motion, which will be quite similar to the 
equations, strictly deduced by us in works [4] – [7]. 
Indeed, since it is a matter of free fluctuations, each 
point of the rope will have to move along its 
trajectory at some speed u  perpendicular to the 
speed v  (see Figure 1), which allows us to write 
the following system of equations immediately 
taking into account the results of the work [4]   

  

2

1 1
1

2

1
2

v sin ,

cos v ,

uu g k
R

u fg
R

α
ρ

α
ρ


= + −



 = − +





,                         (4)  

where 1R −  is radius of curvature at a given point 
in the rope (see Figure 1), 2R −  is radius of 
curvature of the trajectory, which moves the 
arbitrary point of the rope, and 1 2R R⊥  at each 
point in time and at each point of the rope, f −  is 
the linear density of force caused by the internal 
tense state of the rope, 1k −  is the coefficient of 
resistance of the continuum in which the rope 
moves, ρ −  is linear density of the rope. Corners 

1α  and 2α  shown in the Figure 1.   

The speed of moving the rope points (see work [4]) 
can be determined as  

        1 1v Rα= −  ,                                            (5)  

where the radius of curvature at an arbitrary point 
of the rope for the two-dimensional case we are in 
is   

2

2

3
21 2

1

1

y

x

y

x

d
d

R
d
d

ξ
ξ

ξ
ξ

=
  
 +     

.                                 (6)  

We emphasize that all derivatives in (7) are taken 
for a fixed point of time t . In the language of 

corner coefficient 1
y

x

d
k

d
ξ
ξ

=  the expression (6) can 

be represented as an equivalent  

( )

1

3
21 2

1

1

1

x

dk
d

R k

ξ
=

+
.                                           (7) 

As to the radius of curvature 2R , it can be 
represented in the form similar to formulas (6) and 
(7), but recorded already through some new 
independent function ( )xψ ψ ξ=  that is       
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2

2

3
22 2

1

1

x

x

d
d

R
d
d

ψ
ξ

ψ
ξ

=
  
 +     

                               (8)  

or using a corner coefficient 2
x

dk
d
ψ
ξ

=  in the form 

of  

( )

2

3
22 2
2

1

1

x

dk
d

R k

ξ
=

+
.                                          (9) 

The condition of transversality (see [9] – [17]) for 
an arbitrary point of the rope we can imagine how  

( )
( )

,1 2
,

1x y

x y

t t
x x

k k ξ ξ
ξ ξ

=
=

= − .                                        (10)  

    Thus, the system of equations (4) is completely 
defined. Now we have to find only equations for 
the offset functions xξ  and yξ .   

    In our opinion, the most convenient and rational 
method of withdrawal of any dynamic equations of 
motion is the use of the law of conservation of 
energy (see, for example, work [8]). In fact, it is 
very convenient to use the following approach as 
part of the task. Because the rope length element is  

2 2
x ydl dxξ ξ′ ′= + ,                                        (11) 

by differentiating total energy (2) by t ime, and 
considering that the upper limit of integration is 
also a function of time, we find as a result  

( )

( ) ( )

( )

( )

1

0

1

0

1

0

1

2 2 2 2

2 2

2 2

2 2

2 2 2 2
1

2 2 v 2

2 v 2

2 2

2 v 2 0.

x

x y
x

x
x x y y

x x y

x

x y
x

x y
x x

E dx
t

dx

dx

x

ρ ξ ξ

ξ ξ ξ ξ
ρ

ξ ξ

ρ ξ ξ

ρ ξ ξ
=

∂ ′ ′= + + ⋅ + =
∂

′ ′ ′ ′+
= + + ⋅ +

′ ′+

′ ′+ ⋅ + ⋅ + +

′ ′+ + + ⋅ + =

∫

∫

∫

ξ g ξ

ξ g ξ

ξ ξ g ξ

ξ g ξ



 


  



         (12) 

The first term in (12) is integrated by parts, 
allocating private derivatives by time xξ  and yξ . 
As a result we find  

( )

( )

( ) ( )

( )

( )

1

0

1

1

1

0

1

0

2 2 2 2
0

2 2 2 2
1

2 2

2 2

2 2

2 2

2 2

2 2 v 2

2 v 2

2 v 2

2 v 2

2 2

x

x y
x

x y
x x

x x y y

x y x x

x
x

x
x x y

x

x y
x

y

E dx
t

x

dx
x

dx

x

ρ ξ ξ

ρ ξ ξ

ξ ξ ξ ξ
ρ

ξ ξ

ξ
ρξ

ξ ξ

ρ ξ ξ

ξ
ρξ

=

=

∂ ′ ′= + + ⋅ + =
∂

′ ′= + + ⋅ + +

′ ′+
+ + + ⋅ −

′ ′+

 ′ + + ⋅∂  − +
∂  ′ ′+ 

′ ′+ ⋅ + ⋅ + −

′∂
−

∂

∫

∫

∫

ξ g ξ

ξ g ξ

ξ g ξ

ξ g ξ

ξ ξ g ξ





 





  

 ( )1

0

2 2

2 2

2 v 2
0.

x
y

x x y

dx
ξ ξ

 + + ⋅
  =
 ′ ′+ 

∫
ξ g ξ

             (13) 

   Sum of expressions in equation (13) at arbitrary 
point of rope ( )1 1 ,x yx x ξ ξ=  is a condition of 
transversality for a v ariational problem with a 
movable boundary [9], i.e.  

( )

( ) ( )
1

1

2 2 2 2
1

2 2

2 2

2 v 2

2 v 2 0

x y
x x

x x y y

x y x x

x ρ ξ ξ

ξ ξ ξ ξ
ρ

ξ ξ

=

=

′ ′+ + ⋅ + +

′ ′+
+ + + ⋅ =

′ ′+

ξ g ξ

ξ g ξ



 


. 

Where does it come from that  

( ) ( )

1

2 2 2 2
1 2 2

2 v 2 0x x y y
x y

x y
x x

x
ξ ξ ξ ξ

ξ ξ
ξ ξ

=

 ′ ′+
 ′ ′+ + ⋅ + + =
 ′ ′+ 

ξ g ξ
 

  It 

is clear that the physical sense in this factorial 
expression can only carry a multiplier in 
parentheses. Equating it to zero, we get the 
following condition of transversality  

( )
1

2 22 v 2 0
x x=

+ + ⋅ =ξ g ξ .                              (14) 

Note that the equation (14) is nothing but the law of 
conservation of energy. Indeed, if in the marginal 
case to assume that the rope is a rigid bar with a 
dynamic angular variable ϕ  that characterizes its 
deviation from the vertical axis, the parameters 
included in (14) can be represented as  

2 2
2 2 2 2 2 2 2

0

sin cos ,

v v ,
cos ,

x y c c c

y c

d dl l l
dt dt

const
g gl

ξ ξ ϕ ϕ ϕ

ξ ϕ

   = + = + =   
   

= =
⋅ = − = −

ξ

gξ

   
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where cl −  is the center of gravity of the rod, and 

1 cx l= . So instead of (14) we immediately get the 
law of preserving the energy of the rod explicitly  

2 2 2
02 cos 2 vc cl gl constϕ ϕ− = = .                  (15) 

    Thus, given the condition (14) equation (13) is 
greatly simplified and believing that 

x x y yξ τ ξ τ⋅ = +ξ τ    and ygξ⋅ = −gξ   , after a simple 

grouping of the components with xξ  and yξ we are 
finding       

( )

( ) ( )

1

0

1

0

2 2 2
2 2

2 2

2 2 2
2 2

2 2

2

2 v 2

2 v 2
0.

x
x x y y

x x x y
x x y

x
y x y y

y y x y
x x y

E

g
dx

x

g
g dx

x

ξ ξ ξ ξ
ρξ ξ ξ ξ

ξ ξ

ξ ξ ξ ξ
ρξ ξ ξ ξ

ξ ξ

=

  ′ + + −∂  ′ ′= + − + ∂  ′ ′+   
  ′ + + −∂  ′ ′+ + + − = ∂  ′ ′+   

∫

∫



 
 

 
 

 (16) 

It should be noted here that the equation (16) does 
not include energy dissipation. It is obvious that to 
be taken into account it is necessary to add to (16) 
the 2Q  where Q −  is the dissipative function 
(also, as it was done, for example, in work [8]). 
That is, the general equation taking into account the 
resistance of environment and other braking factors 
should have the form  

   0E Q+ = .                                                (17) 

   Due to the independence of the values 0xξ ≠  

and 0yξ ≠  get from eq. (16) the following system 
of the two main equations  

( )

( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

2 2

2 v 21 0,
2

2 v 21
2

.

x x y y
x x y

x y

y x y y
y x y

x y

x y

g

x

g

x

g

ξ ξ ξ ξ
ξ ξ ξ

ξ ξ

ξ ξ ξ ξ
ξ ξ ξ

ξ ξ

ξ ξ

  ′ + + −∂  ′ ′+ − =
 ∂  ′ ′+ 
  ′ + + −∂  ′ ′+ − = ∂  ′ ′+  

 ′ ′= − +




 


 


        (18) 

   As seen from them, in the marginal case of small 
oscillations of the heavy rope in the field of gravity 
from the system of equations (18) after neglecting 
all quadratic by offsets ,x yξ ξ  components, 
replacing the argument x  on y , and believing 

y yξ =  as well as believing that the displacement 

vector is ( ),0xξ ξ≈


, from the upper equation of 
the system (18) immediately get the following 
linear equation  

( )2
0v 0x x gy

y
ξ ξ∂ ′− − =

∂
 ,                                (19) 

Which, as it should be, coincides with the given, 
for example, in [1]. Thus the lower equation is 
satisfied identically.  

    In fact, given that 1yξ ′ = , it has the following 
chain of simple transformations  

( )

( )

2 2 2 2

2 2 2
0

2 2

2
0

2 v 21
2

v 0

y x y x y

y x y

x y

y

g

gy

y

g gy
y

ξ ξ ξ ξ ξ

ξ ξ ξ

ξ ξ

ξ

′ ′ ′ ′+ − + −

 ′ + + −∂  − =
∂  ′ ′+ 

∂  ′= − − − ≡ ∂



 
. 

In the case, if we consider small horizontal 
oscillations, such as strings, then believing that the 
vector of bias is ( )0, yξ ξ≈


, from the lower 

equation of the system (18) we will find  

( )

2 2 2 2

2 2 2

2 2

2
0

2 v 21
2

v 0

y x y x y

y x y y

x y

y y

g

g

x

g

ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

ξ ξ

′ ′ ′ ′+ + + −

 ′ + + −∂  − ≈
∂  ′ ′+ 

′′≈ + − =



 



.  

Here it is taken into account that 1xξ ′ = . That is the 
usual equation of small vibrations of a string in a 
field of gravity   

2
0vy y gξ ξ ′′− = −                                              (20) 

The upper equation is satisfied identically. Indeed, 
we have for him   

( )2 2 2

2 2

2
0

2 v 21
2

v 0

x x y y
x

x y

x x

g

x

x

ξ ξ ξ ξ
ξ

ξ ξ

ξ ξ

 ′ + + −∂  − ≈
∂  ′ ′+ 

∂ ′≈ − ≈
∂

 




, 

where it was immediately taken into account that it 
is only about the transverse oscillations of the 
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string, when its longitudinal offsets are absent, that 
is ( )0, yξ ξ≈


.  

   So, taking into account the equations (4) – (6), as 
well as the equations of transversality (10) and 
(14), the system of equations (18) forms a complete 
closed system of all the basic equations describing 
the dynamics of arbitrary oscillations of heavy 
ropes and similar objects, namely  

( )

( )

( )
( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

2 2

2

1 1
1

2

1
2

1 1

,1 2
,

2 v 21 0,
2

2 v 21
2

,

v sin ,

cos v ,

v ,

x y

x y

x x y y
x x y

x y

y x y y
y x y

x y

x y

t t
x x

g

x

g

x

g

uu g k
R

u fg
R

R
k k ξ ξ

ξ ξ

ξ ξ ξ ξ
ξ ξ ξ

ξ ξ

ξ ξ ξ ξ
ξ ξ ξ

ξ ξ

ξ ξ

α
ρ

α
ρ

α
=
=

 ′ + + −∂  ′ ′+ − =
∂  ′ ′+ 

 ′ + + −∂  ′ ′+ − =
∂  ′ ′+ 

′ ′= − +

= − −

= − +

= −

= −

 


 








( )
1

2 2

2

2

3
21 2

2

2

3
22 2

1,

2 v 2 0,

1 ,

1

1 .

1

x x

y

x

y

x

x

x

d
d

R
d
d

d
d

R
d
d

ξ
ξ

ξ
ξ

ψ
ξ

ψ
ξ

=
























+ + ⋅ =



 =


    +       




=
     +      

ξ g ξ

          (21) 

 
 
3 Analysis of the Equations 

It is clear that it is possible to find the solution 
of this system of equations in the general form only 
by numerical methods with corresponding 
boundary and initial conditions. However, in some 
individual cases, the resulting common system of 
nonlinear differential equations, as w e have seen 
above, is still amenable to analysis. As another 
example, consider this.  
    Suppose that the rope is absolutely rigid and is a 
normal rod. In this case, it can be assumed that  

sin , cosx yx r y rξ ϕ ξ ϕ= = = =   

where r −  is the arbitrary current distance, 
measured from the anchor point of the bar along its 

axis, and ϕ −  is angle between the bar axis and the 
axis y . So  

x

y

tg ξϕ
ξ

= , 

 аnd corner factor  

1
y

x

d
k ctg

d
ξ

ϕ
ξ

= = . 

Because the length r  does not depend on t ime, 
then for derivatives in time we have  

cos , sinx yr rξ ϕ ϕ ξ ϕ ϕ= = −     

Further, neglecting friction, and by virtue of the 

fact that 2 2 2 2
x yr x yξ ξ= + = +  get using the 

system (21)  

( )

( )

( )

( )

2

2

2

0
2 2

1
2

2

3
22 2

cos

1 cos 2 cos 0,
2cos

sin

1 sin 2 cos
2cos

,
sin ,

cos ,

v v 0,

2 cos 0,
1 0,

1

1

x

x

drtg
dt

r g

drtg
dt

r g

gtg
u g

uf g
r

R
r gr

R
d
d cons

R
d
d

ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ
ϕ

ϕ

ρ ϕ

α

ϕ ϕ

ψ
ξ

ψ
ξ

−

∂  − − = ∂

+

∂  + − = ∂
= −
= −

 
= + 

 
= − = =

− =

=

= =
  
 +     















.t





































 (22) 
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Because 2 2 2 cos 0r grϕ ϕ− =  the first two 
equations are instantly simplified and given to the 
view  

( )

( )

cos 0,

sin .

d
dt

drtg gtg
dt

ϕ ϕ

ϕ ϕ ϕ ϕ

=

= −





 

Where, after time differentiation, we will find  

2

2

cos sin 0,

sin cos .g
r

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− =

+ = −

 

 
 

Multiplying the upper equation by cosϕ and the 
bottom on sinϕ , and having folded them, we will 
get  

sin 0g
r

ϕ ϕ+ = .                                             (23) 

That is, as it should be ¸ we have got the equation 
of arbitrary vibrations of a rod, completely 
equivalent to the third on the top equation of 
system (22).     

    As for the boundary and initial conditions for the 
common system (21), they can be chosen on t he 
basis of the following considerations.    

Since one end of the rope is stationary, at this point 
we have the conditions   

( ) ( )0, 0, 0x yt tξ ξ= = .                                 (24)  

For the rolling end of the rope can use the condition 
of transversality (14) 

( )
1

2 22 v 2 0
x x=

+ + ⋅ =ξ g ξ .                            (25) 

As initial conditions it is possible to require 
execution, for example, such. Let the initial form of 
the rope be defined as (1), i.e.  

( ) ( ),0x x=ξ S .                                             (26) 

And the initial speed of the rope let it be  

( )
0t

x
t =

∂
=

∂
ξ V .                                          (27)  

Thus, it can be argued that the seven conditions 
(24) – (27) are sufficient for the unambiguous 
solution of the task. For specific dependencies (26) 

and (27) numerical integration of equations (21) 
allows you to find the shape of the rope at any time 
and for each value of the coordinates x . 
 
 
4 Main Results  

The system of strong non – linear differential 
dynamic equations it’s find, which describing the 
behavior of strong dimension objects.  
 
 
5 Conclusion  
    The merit of the presented work is the 
description of the method of inducing any dynamic 
equations with the help of the law of energy 
conservation, which has not been done before. 
Therefore, the author's subsequent work will 
continue the above-mentioned approach in 
annexing other complex dynamic systems. 
 
    In the conclusion of the work we will once again 
summarize all the main results obtained above.  
1.  Based on t he law of Conservation of 

energy, obtained a system of nonlinear 
equations, describing the arbitrary 
displacement of the rope 
( ) ( ) ( ), , ,x yx t x t x tξ ξ= +ξ i j ; 

2. The physical movement of the surface rope 
points moving at the speed of v  thanks to 
oscillatory movements;  

3. Obtained a condition of transversality for 
any point of the rope;  

4. It is taken into account the orthogonal 
movement of the rope with the speed u ;  

5. On concrete examples the limit physical 
transitions from the general system of 
equations (21) to classical tasks are 
illustrated.       

 
Fig.1. A schematic image of an arbitrary 
displacements of the rope. All the symbols in the 
picture are explained in the text of the article. 
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